

Anna Paula Lougon Duarte

Avaliação de Propriedades Termo-Hidráulicas de Solos Requeridas na Aplicação da Técnica de Dessorção Térmica

Tese de Doutorado

Tese apresentada ao Programa de Pós-graduação em Engenharia Civil da PUC-Rio como requisito parcial para a obtenção do título de Doutor em Engenharia Civil.

Área de Concentração: Geotecnia

Orientadores: Tácio Mauro Pereira de Campos José Tavares Araruna Júnior

Rio de Janeiro, 13 de fevereiro de 2004.

Avaliação de Propriedades Termo-Hidráulicas de Solos Requeridas na Aplicação da Técnica de Dessorção Térmica

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> **Prof. Tácio Mauro P. de Campos** Presidente/Orientador Departamento de Engenharia Civil – PUC-Rio

> **Prof. José T. Araruna Jr.** Co-Orientador Departamento de Engenharia Civil – PUC-Rio

> > Prof. Manoel de Melo M. Nobre. UFAL

Prof. Roberto F. de Azevedo UFV

Prof. Eurípedes do A. Vargas Jr. Departamento de Engenharia Civil – PUC-Rio

Prof. Franklin dos S. Antunes Departamento de Engenharia Civil – PUC-Rio

Prof. José Eugênio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 13 de fevereiro de 2004.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Anna Paula Lougon Duarte

Engenheira Civil, formada pela UNB em 1995. Especialista em Geotecnia pela UnB em 1996. Especialista em Geotecnia pela Universidade de Brasília em 1996. Realizou o curso de extensão em Mecânica dos Solos e Engenharia de Fundações pelo CEDEX-Madrid em 1998. Concluiu o Mestrado em Engenharia Civil em 1999, com o estudo do mecanismo de ruptura da encosta em solo não saturado da Vista Chinesa. Atuante na área de Geotecnia Ambiental desde 1998.

Ficha Catalográfica

Duarte, Anna Paula Lougon.

Avaliação de Propriedades Termo-Hidráulicas de Solos Requeridas na Aplicação da Técnica de Dessorção Térmica / Anna Paula Lougon Duarte; orientadores: Tácio Mauro Pereira de Campos e José Tavares Araruna Júnior. – Rio de Janeiro: PUC, Departamento de Engenharia Civil, 2004.

v., [33], 290f. :il. ; 30cm

1.Tese (doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil.

Inclui referências Bibliográficas

1. Geotecnia ambiental. 2.Dessorção térmica. 3.Fluxo acoplado de calor e umidade em solos. 4.Efeitos de temperatura em solos. 5.Ensaios de laboratório 6.Solos nãosaturados. I.de Campos, Tácio M. P. (Tácio Mauro Pereira). II Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. III. Título.

Ao meu amado companheiro e grande amigo que me preenche a vida com tantas alegrias, meu marido Mário.

Aos meus PAIS, Edson e Anna, pelo apoio irrestrito, confiança incondicional e amor pleno.

Agradecimentos

À Deus, por sua infinita bondade e amor, pois somente com sua benção foi possível a realização deste trabalho.

Aos Professores Tácio e Araruna pela valiosa orientação.

As instituições CAPES, PRONEX/CNPq e a PUC-Rio pelo apoio financeiro.

Aos professores do Departamento, pelos conhecimentos transmitidos e pela agradável convivência, em especial aos meus amigos Celso Romanel, Franklin Antunes e Vargas.

Um agradecimento todo especial a turma do laboratório, que com dedicação e competência foram imprescindíveis neste trabalho: "Mestre" William, "Seu" José, Amaury e Josué.

Aos funcionários do Departamento de Engenharia Civil pela disponibilidade, atenção e amizade, em especial a Ana Roxo, Fátima, Lenilson e Cristiano.

Ao professor Gusmão pela grande ajuda. Ao Victor Hugo pela participação na montagem dos equipamentos eletrônicos.

A Rosane Maia Nobre que muito colaborou dividindo os seus conhecimentos sobre fluxo de calor em solos.

Ao casal Ana Valéria e Luís Bertolino pela presteza e simpatia, na ajuda com o microscópio eletrônico.

Aos meus pais incentivadores, os quais são meu palco e minha platéia, dizer obrigada é pouco diante de tudo o que vocês fizeram por mim! Essa conquista é de vocês.

A minha doce irmã e afilhada, que mesmo à distância foi primordial nesta caminhada. Você é muito importante e querida!

Aos meus familiares que me receberam no Rio com os braços abertos, ajudando a tornar a minha estadia aqui cada vez mais prazerosa, com carinho todo especial aos Tios com açúcar, Adinet e Egberto, Liese e Eduardo. E a prima que a vida transformou em irmã, Renata, com sua adorada família Flávio e Felipe.

À Dona Ayr, Seu Mário, Cristina e Conrado por agora sermos uma única família, obrigada pelo apoio e incentivo.

A todos os professores de Geotecnia da UnB, que plantaram em mim a semente da vida acadêmica. Em especial a memória do professor Feitosa, figura ímpar, sempre disposto a ajudar e a ensinar.

Ao grande amigo Sérgio Tibana, mais uma vez incansável no apoio, na colaboração e no carinho, e que ainda me presenteou com o convívio de sua doce família.

Aos amigos de todas as horas, com quem pude contar para dividir as muitas alegrias e os momentos angustiantes, Raquel e João Luíz, Ana Ghislaine e Paul, Andreia e Thadeu, Suzana e Rodrigo, Lenita e Renato, Lúcio Flávio; saibam que vocês ocupam um lugar todo especial em meu coração.

Aos amigos que estão distante, mais nem por isso menos amados ou esquecidos: Alvane, a toda família Cajaty Barbosa Braga, Liliam, Evaldo, Eduardo, Deinha e Maurício, Paulinha, Simone e Héctor, Lúcio Flávio e, Carlos Carillo.

Aos amigos da Pós Graduação do Departamento de Engenharia Civil pela prazerosa convivência e pelas ajudas preciosas: Ana Cristina, Ciro, Ataliba, Ana Júlia, Suzana Costa, Cleide e Eudes, Leonardo Bello, Patrício, Luciana, e, Mônica. Ainda assim é impossível citar todos aqueles que foram importantes para a realização desta tese.

Ao meu amor, Mário, que participou deste "projeto" desde o início, não me restam dúvidas que você foi a melhor parte desta pesquisa, obrigada pela paciência, pelo apoio, pela dedicação e sobretudo por ter se tornado meu esposo.

Resumo

Duarte, Anna Paula Lougon; de Campos, Tácio Mauro Pereira; Araruna, José Tavares. Avaliação de Propriedades Termo-Hidráulicas de Solos Requeridas na Aplicação da Técnica de Dessorção Térmica. Rio de Janeiro, 2004. 290p. Tese de Doutorado – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

A presente tese apresenta uma abordagem sobre a técnica de dessorção térmica na remediação de áreas contaminadas, esta tecnologia se baseia no aquecimento direto do solo. A propagação de calor num solo é simulada matematicamente pelo fluxo acoplado de calor. Para que esta simulação seja possível é necessário a identificação dos parâmetros relevantes para o problema: condutividade hidráulica em função da umidade volumétrica, condutividade térmica em função da umidade volumétrica, capacidade de aquecimento volumétrico, e, curva característica de sucção. Uma discussão técnica é apresentada sobre estes parâmetros.

Foram estudados dois tipos de solos, uma argilo-arenoso (Campo Experimental da PUC-Rio) e um areno-argiloso (Cidade dos Meninos). É apresentado um estudo físico-químico sobre os efeitos da temperatura nos solos, com ensaios de RaiosX, Microscopia Eletrônica, CTC, Ataque Sulfúrico e de Caracterização para solos não aquecidos e previamente aquecidos até a temperatura de 300°C.

São apresentadas metodologias e equipamentos que foram desenvolvidos e/ou adaptados de para o estudo das propriedades termo-hidráulicas necessárias. Foram realizados ensaios de condutividade hidráulica, curvas características de sucção e deformabilidade, levando-se em conta a temperatura. Todos os parâmetros mostraram-se altamente dependente desta. Os parâmetros térmicos, condutividade térmica e calor específico, foram determinados para estes dois de solos.

Palavras-chave

Geotecnia ambiental; dessorção térmica; fluxo acoplado de calor e umidade em solos; efeitos de temperatura em solos; ensaios de laboratório; solos nãosaturados.

Abstract

Duarte, Anna Paula Lougon; de Campos, Tácio Mauro Pereira; Araruna, José Tavares. A Study of Soil Termo-Hydraulics Properties Required at the Application of the Thermal Desorption. Rio de Janeiro, 2004. 290p. DSc. Thesis –Civil Eng. Dept., Pontificia Universidade Católica do Rio de Janeiro.

This thesis presents an introduction on the use of the thermal desorption technique that is based on the direct heating of the soil, for the remediation of contaminated areas. Heat propagation through soils can be mathematically simulated using coupled heat-moisture transfer theories. In order to make this simulation possible it is necessary to identify the required parameters: hydraulic conductivity as a function of volumetric water content, thermal conductivity as a function of volumetric water content, volumetric heat capacity, and soil-water characteristic curve. One technical description of such parameters is presented.

Two different kinds of soils were used, one clay-sand (CH) and one sandclay (SC). A study physico-chemical was done talking into consideration the temperature effect on the soils with X-Ray, electron microscopic investigation, CTC, Atterberg Limits and at the particle size distribution. The study was done on pre-heated soils with temperatures ranging from 20°C to 300°C.

Equipments and methodologies have been especially developed for the study of the thermo-hydraulics proprieties. The laboratory tests program consisted of hydraulic conductivity, retention curves and deformability, taking into account the temperature effects. During the tests it was observed that all parameters were temperature dependent. The thermal parameters, thermal conductivity and heat capacity were studied for both soils.

Keywords

Environmental geotechnical; thermal desorption; coupled heat-moisture transfer; effects of the temperature on soils; laboratory tests; unsaturated soils.

Sumário

1 Introdução	34
1.1 Estrutura da Tese	36
2 Dessorção Térmica	38
2.1. Contaminantes	50
3 Modelagem Matemática do Aquecimento de um Solo	53
3.1. Condutividade térmica e capacidade de aquecimento volumétrico	54
3.2. Fenômenos de Transferência de Calor	61
3.3. Fluxos Acoplados	64
4 Efeitos da variação de temperatura nas propriedades dos solos	74
4.1. Efeitos da Temperatura no Comportamento Hidráulico	77
4.2. Propriedades da água nos solos e a influência da temperatura	82
5 Características dos Solos e dos Corpos de Prova Utilizados	84
5.1. Solos Utilizados	84
5.1.1. Localização, Clima e Geologia	84
5.1.1.1. Solo Coluvionar – Campo Experimental	84
5.1.1.2. Solo Sedimentar Arenoso – Cidade dos Meninos	86
5.1.2. Caracterização Física dos Materiais	88
5.1.3. Análises Mineralógicas e Geoquímica	94
5.2. Preparação e Confecção das amostras	99
5.2.1. Confecção das amostras - Compactação	99
6 Equipamentos e Metodologias de Ensaios	105
6.1. Condutividade Hidráulica Saturada	107
6.1.1. Metodologia de Ensaio	109
6.2. Condutividade Térmica e Calor Específico	110
6.2.1. Metodologia de Ensaio	120

6.1.1.1. Condutividade Térmica	120
6.2.1.2. Calor Específico	121
6.3. Curvas Características de Sucção	121
6.3.1. Metodologia de Ensaio	123
6.4. Condutividade Hidráulica Saturada com Temperatura Controlada	125
6.4.1. Metodologia de Ensaio	131
6.5. Célula de Compressão Isotrópica com Temperatura Controlada	132
6.5.1. Metodologia de Ensaio	133
7 Apresentação e Análise dos Resultados	135
7.1. Condutividade Hidráulica Saturada	135
7.2. Condutividade Térmica e Calor Específico	144
7.2.1. Condutividade Térmica	144
7.2.2. Calor Específico	155
7.3. Curvas Características de Sucção	162
7.3.1. Curvas de Condutividade Hidráulica Não Saturada	175
7.4. Ensaios de Condutividade Hidráulica Saturada com Temperatura	
Controlada	179
7.5. Célula de Compressão Isotrópica com Temperatura Controlada	190
8 Conclusões e Sugestões	198
8.1 Conclusões	198
8.1.1 Propriedades Físicas, Físico-Químicas e Mineralógicas	199
8.1.2 Condutividade Hidráulica Saturada	200
8.1.3 Condutividade Térmica e Calor Específico	202
8.1.4 Curvas Características de Sucção	204
8.1.5 Aplicação da Técnica de Dessorção Térmica	205
8.2 Sugestões para pesquisas futuras	206
9 REFERÊNCIAS BIBLIOGRAFICAS	208
Apêndice A – Calibração da Instrumentação	218
A.1 Calibrações para Permeâmetro de Parede Flexível e Carga Const	ante

	219
A.1.1. Transdutores de Pressão	219
A.1.2. Medidor de Variação Volumétrica	220
A.2. Calibrações para Permeâmetro de Temperatura Controlada	a 220
A.2.1. Transdutores de Pressão	220
A.2.2. Medidor de Variação Volumétrica	223
A.2.3. Calibração dos Termopares	223
Apêndice B Gráficos dos Ensaios de Permeabilidade Saturada	228
B.1. Ensaios com o Permeâmetro de Parede Flexível e Carga	Constante
	228
B.1.1. Solo do Campo Experimental	229
B.1.2. Solo da Cidade dos Meninos	236
B.2. Ensaios de Permeabilidade Saturada com Temperatura Co	ontrolada
	240
B.2.1. Solo do Campo Experimental	241
B.2.2. Solo da Cidade dos Meninos	248
Apêndice C Dados para a obtenção do Calor Específico	255
C.1. Solo do Campo Experimental	256
C.2. Solo da Cidade dos Meninos	259
Apêndice D Dados para a Obtenção da Curva Característica	262
D.1. Solo do Campo Experimental	263
D.1.1. Curva do Material Seco ao Ar	263
D.1.2. Curva do Material Natural	263
D.1.3. Curva do Material Saturado	264
D.1.4. Curva do Material Submetido a Temperatura de 50ºC	265
D.1.5. Curva do Material Submetido a Temperatura de 100ºC	265
D.1.6. Curva Característica do Material Submetido a 200°C.	272
D.1.7. Curva Característica do Material Submetido a 300°C.	273
D.1.8. Curva Característica do Material Submetido a 100°C e Sa	aturado.

273

D.1.9. Curva Característica do Material Submetido a 300°C e Saturado.

	274
D.2. Solo da Cidade dos Meninos	275
D.2.1. Curva do Material Natural	275
D.2.2. Curva do Material Submetido a 100ºC	275
D.2.3. Curva do Material Submetido a 200ºC	276
D.2.4. Curva do Material Submetido a 300ºC	277
Apêndice E Dados de Variação de Volume com a Temperatura	278
E.1. Solo do Campo Experimental	279
E.2. Solo da Cidade dos Meninos	285

Lista de Figuras

Figura 1 – Sistemas de Dessorção Térmica <i>in situ</i> (Terratherm, 2001).	42
Figura 2- Relação entre temperatura e pressão de vapor (EPA, 1998)	45
Figura 3- Variação da viscosidade e peso específico da água com a	
temperatura.	79
Figura 4 – Localização do Campo Experimental II da PUC-Rio. (Benev	eli,
2002)	85
Figura 5 – Descrição morfológica do perfil (Daylac, 1994)	86
Figura 6 – Mapa da cidade do Rio de Janeiro destacando a Cidade do	S
Meninos	87
Figura 7 – Localização da retirada das amostras e direção do fluxo d'á	gua
subterrânea.	88
Figura 8 – Curvas granulométricas	89
Figura 9 - Curvas granulométricas dos solos pré-aquecidos: (a) solo do)
Campo Experimental, (b) solo da Cidade dos Meninos.	92
Figura 10 – Variações dos Limites de Atterberg: (a) solo do Campo	
Experimental, (b) solo da Cidade dos Meninos	93
Figura 11 - Difratogramas de Raios-X do solo do Campo Experimental	. 97
Figura 12 - Difratogramas de Raio-X do solo da Cidade dos Meninos.	97
Figura 13 – Mudança na coloração das amostras com a temperatura:	
Campo Experimental (a), Cidade dos Meninos (b)	98
Figura 14 - Esquema do molde de compactação	100
Figura 15 – Foto do Molde	100
Figura 16 – Fotografias da Prensa de adensamento Modelo Bishop	
utilizadas: (a) vista frontal e (b) vista lateral.	101
Figura 17 – Variação dos pesos específicos segundo pressão de	
compactação.	103
Figura 18 – Curvas de Compactação Estática para pressão de 500kPa	1:
(a) solo do Campo Experimental e (b) solo da Cidade dos Meninos.	103

Figura 19 – Permeâmetro desenvolvido no laboratório de Geotecnia da	а
PUC-Rio	107
Figura 20 – Representação esquemática do permeâmetro	108
Figura 21 – Esquema de sonda térmica	114
Figura 22- Sonda térmica e Data-Logger	116
Figura 23 – Molde de latão e placas isolantes para a medição do calor	•
específico.	117
Figura 24 – Medição do calor específico	117
Figura 25 – Termômetro digital MINIPA	118
Figura 26 – Curva de fator tempo para fluxo de calor radial. Michell e k	۲ao
(1978)	119
Figura 27 – Detalhe da câmara de aço	125
Figura 28 – Unidade de controle de temperatura	126
Figura 29 – Detalhes do sistema de aquecimento	127
Figura 30 – Detalhe do medidor de variação de volume e do LSCDT	128
Figura 31 – Detalhe dos termopares instalados na base e no topo da	
amostra	129
Figura 32 – Permeâmetro de temperatura controlada	129
Figura 33 – Diagrama esquemático do permeâmetro de temperatura	
controlada.	130
Figura 34 – Medidor de variação volumétrica com temperatura	
controlada.	133
Figura 35 – Ensaio de condutividade hidráulica da amostra a temperat	tura
ambiente para o solo do Campo Experimental: (a) variação de volume	
com o tempo; (b) variação do gradiente hidráulico com o tempo;	
(c)variação da condutividade hidráulica com o tempo.	138

Figura 36 – Variação da condutividade hidráulica para corpos de provasubmetidos a gradientes de temperatura em mufla e ensaiados atemperatura ambiente.139Figura 37 – Imagens das lâminas com microscópio eletrônico141

Figura 38 – Variação do fator de forma C para corpos de prova

submetidos a diferentes gradientes de temperatura em mufla.	143
Figura 39 – Variação do índice de vazios com a umidade, limite de	
contração:	
(a) solo do Campo Experimental, (b) solo da Cidade dos Meninos.	147
Figura 40 – Curva de condutividade térmica x umidade gravimétrica (a));
condutividade térmica x grau de saturação(b); condutividade térmica x	
umidade volumétrica (c).	149
Figura 41- Comparação dos valores de condutividade térmica	151
Figura 42 – Previsões da condutividade térmica com a umidade	
gravimétrica	155
Figura 43 – Previsões da condutividade térmica com o grau de	
saturação	155
Figura 44- Variação da temperatura com o tempo para o solo do Camp	0
Experimental com umidade higroscópica de 1,42%	157
Figura 45- Relação do calor específico com a temperatura para o solo	do
Campo Experimental.	159
Figura 46- Relação do calor específico com a temperatura para o solo	da
Cidade dos Meninos.	160
Figura 47 – Variação do calor específico com a temperatura analisando	o-se
o índice de vazios.	162
Figura 48 – Curva característica em função do teor de umidade em	
peso.	163
Figura 49- Curva característica em função do teor de umidade	
volumétrica	164
Figura 50- Curva característica em função do grau de saturação.	165
Figura 51 – Curvas características em função do teor de umidade em p	eso
para diferentes temperaturas: (a) solo do Campo Experimental, (b) solo	o da
Cidade dos Meninos.	166
Figura 52- Curva característica em função do teor de umidade volumét	rica
para corpos de prova submetidos a diferentes gradientes de	
temperaturas: (a) solo do Campo Experimental, (b) solo da Cidade dos	
Meninos.	171
Figura 53 – Curvas características da Campo Experimental em função o	do

teor de umidade em peso para diferentes temperaturas seguindo-se a trajetória de secagem. 174 Figura 54 – Curvas obtidas para o solo do Campo Experimental: (a) Curva Característica, (b) Condutividade hidráulica não saturada. 177 Figura 55 – Curvas obtidas para o solo da Cidade dos Meninos: (a) Curva Característica, (b) Condutividade hidráulica não saturada. 178 Figura 56 – Ensaio de condutividade hidráulica da amostra do Campo Experimental à 40°C: (a) variação de volume com o tempo; (b) variação do gradiente hidráulico com o tempo; (c)variação da condutividade hidráulica com o tempo; (d) variação da temperatura com o tempo. 180 Figura 57 – Variação da condutividade hidráulica com a temperatura. 181 Figura 58- Variação da condutividade hidráulica intrínseca com a temperatura. 182 Figura 59 – Variação dos Parâmetros com a temperatura para o solo do Campo Experimental: (a) variação de volume x temperatura, (b) variação do índice de vazios x temperatura, (c) $\Delta V / V_m$ x temperatura, (d) α_T x 185 temperatura. Figura 60 – Variação dos Parâmetros com a temperatura para o solo da Cidade dos Meninos: (a) variação de volume x temperatura, (b) variação do índice de vazios x temperatura, (c) $\Delta V / V_m$ x temperatura, (d) α_T x temperatura. 186 Figura 61 – Variação da condutividades hidráulicas com a temperatura 189 Figura 62 – Ensaio para o solo do Campo Experimental na temperatura de 32°C: (a) variação da poropressão com o tempo; (b) variação de volume com o tempo. 191 Figura 63 – Ensaio de variação de volume para o solo da Cidade dos Meninos na temperatura de 32,30°C: (a) variação da poropressão com o tempo; (b) variação de volume com o tempo. 192 Figura 64 – Variação dos Parâmetros com a temperatura para o solo do Campo Experimental: (a) variação de volume x temperatura, (b) variação do índice de vazios x temperatura, (c) $\Delta V / V_m$ x temperatura, (d) αt x temperatura. 194 Figura 65 – Variação dos Parâmetros com a temperatura para o solo da

Cidade dos Meninos: (a) variação de volume x temperatura, (b) variação do índice de vazios x temperatura, (c) $\Delta V / V_m$ x temperatura, (d) αt x 195 temperatura. Figura 66 – Comparação da variação da condutividade hidráulica medida e estimada com a temperatura: (a) solo do Campo Experimental, (b) solo da Cidade dos Meninos. 196 Figura 67 – Calibração do transdutor de poropressão – nº00958 219 Figura 68 - Calibração do transdutor de poropressão – nº02858 219 Figura 69 – Calibração do medidor de variação volumétrica 220 Figura 70– Calibração do transdutor de poropressão(nº95290393) em 221 função da temperatura Figura 71– Calibração do transdutor de poropressão(nº95290391) em 222 função da temperatura 223 Figura 72 - Calibração do medidor de variação volumétrica. Figura 73 – Calibração dos termopares com o auxílio do banho-maria 224 Figura 74 – Estabilização das temperaturas no termopar 1 225 Figura 75 – Estabilização das temperaturas no termopar 2 226 Figura 76- Equações de calibração dos termopares 227

Figura 77 – Ensaio de permeabilidade da amostra a temperatura ambiente: (a) variação do volume com o tempo; (b) variação do gradiente hidráulico com o tempo; (c) variação da condutividade hidráulica com o tempo 229

Figura 78 – Ensaio de permeabilidade da amostra submetida a um gradiente de 50°C: (a)variação do volume com o tempo; (b) variação do gradiente hidráulico com o tempo; (c) variação da condutividade hidráulica com o tempo. 230

Figura 79 – Ensaio de permeabilidade da amostra submetida a um gradiente de 100°C: (a)variação do volume com o tempo; (b) variação do gradiente hidráulico com o tempo; (c) variação da condutividade hidráulica com o tempo 231

Figura 80 – Ensaio de permeabilidade da amostra submetida a um

gradiente de 150°C: (a)variação do volume com o tempo; (b) variação do gradiente hidráulico com o tempo; (c) variação da condutividade hidráulica com o tempo. 232

Figura 81 – Ensaio de permeabilidade da amostra submetida a um gradiente de 200°C: (a)variação do volume com o tempo; (b) variação do gradiente hidráulico com o tempo; (c) variação da condutividade hidráulica com o tempo. 233

Figura 82 – Ensaio de permeabilidade da amostra submetida a um gradiente de 250°C: (a)variação do volume com o tempo; (b) variação do gradiente hidráulico com o tempo; (c) variação da condutividade hidráulica com o tempo 234

Figura 83 – Ensaio de permeabilidade da amostra submetida a um gradiente de 300°C: (a)variação do volume com o tempo; (b) variação do gradiente hidráulico com o tempo; (c) variação da condutividade hidráulica com o tempo . 235

Figura 84 – Ensaio de permeabilidade da amostra a temperatura ambiente: (a)variação do volume com o tempo; (b) variação do gradiente hidráulico com o tempo; (c) variação da condutividade hidráulica com o tempo. 236

Figura 85 – Ensaio de permeabilidade da amostra submetida a um gradiente de 100°C: (a)variação do volume com o tempo; (b) variação do gradiente hidráulico com o tempo; (c) variação da condutividade hidráulica com o tempo. 237

Figura 86 – Ensaio de permeabilidade da amostra submetida a um gradiente de 200°C: (a)variação do volume com o tempo; (b) variação do gradiente hidráulico com o tempo; (c) variação da condutividade hidráulica com o tempo. 238

Figura 87 - Ensaio de permeabilidade da amostra submetida a um gradiente de 300°C: (a)variação do volume com o tempo; (b) variação do gradiente hidráulico com o tempo; (c) variação da condutividade hidráulica com o tempo. 239

Figura 88 – Ensaio de permeabilidade da amostra a temperatura ambiente: (a)variação do volume com o tempo; (b) variação do gradiente

hidráulico com o tempo; (c) variação da condutividade hidráulica com o tempo; (d) variação da temperatura com o tempo. 241 Figura 89 – Ensaio de permeabilidade com a amostra na temperatura de 30,5°C: (a)variação do volume com o tempo; (b) variação do gradiente hidráulico com o tempo; (c) variação da condutividade hidráulica com o 242 tempo; (d) variação da temperatura com o tempo. Figura 90 – Ensaio de permeabilidade com a amostra na temperatura de 40,4°C: (a)variação do volume com o tempo; (b) variação do gradiente hidráulico com o tempo; (c) variação da condutividade hidráulica com o tempo; (d) variação da temperatura com o tempo. 243 Figura 91 – Ensaio de permeabilidade com a amostra na temperatura de 50,6°C: (a)variação do volume com o tempo; (b) variação do gradiente hidráulico com o tempo; (c) variação da condutividade hidráulica com o 244 tempo; (d) variação da temperatura com o tempo. Figura 92 – Ensaio de permeabilidade com a amostra na temperatura de 60,2°C: (a)variação do volume com o tempo; (b) variação do gradiente hidráulico com o tempo; (c) variação da condutividade hidráulica com o tempo; (d) variação da temperatura com o tempo. 245 Figura 93 – Ensaio de permeabilidade com a amostra na temperatura de 68,8°C: (a)variação do volume com o tempo; (b) variação do gradiente hidráulico com o tempo; (c) variação da condutividade hidráulica com o 246 tempo; (d) variação da temperatura com o tempo. Figura 94 – Ensaio de permeabilidade com a amostra na temperatura de 77,5°C: (a)variação do volume com o tempo; (b) variação do gradiente hidráulico com o tempo; (c) variação da condutividade hidráulica com o tempo; (d) variação da temperatura com o tempo. 247 Figura 95 – Ensaio de permeabilidade da amostra a temperatura ambiente: (a)variação do volume com o tempo; (b) variação do gradiente hidráulico com o tempo; (c) variação da condutividade hidráulica com o 248 tempo; (d) variação da temperatura com o tempo. Figura 96 – Ensaio de permeabilidade com a amostra na temperatura de 30,8°C: (a)variação do volume com o tempo; (b) variação do gradiente hidráulico com o tempo; (c) variação da condutividade hidráulica com o

tempo; (d) variação da temperatura com o tempo.	249
Figura 97 – Ensaio de permeabilidade com a amostra na temperatura	de
41,0°C: (a)variação do volume com o tempo; (b) variação do gradiente	
hidráulico com o tempo; (c) variação da condutividade hidráulica com	0
tempo; (d) variação da temperatura com o tempo.	250
Figura 98 – Ensaio de permeabilidade com a amostra na temperatura	de
51,4°C: (a)variação do volume com o tempo; (b) variação do gradiente	;
hidráulico com o tempo; (c) variação da condutividade hidráulica com	0
tempo; (d) variação da temperatura com o tempo.	251
Figura 99 – Ensaio de permeabilidade com a amostra na temperatura	de
60,3°C: (a)variação do volume com o tempo; (b) variação do gradiente	;
hidráulico com o tempo; (c) variação da condutividade hidráulica com	0
tempo; (d) variação da temperatura com o tempo.	252
Figura 100 – Ensaio de permeabilidade com a amostra na temperatura	a de
69,8°C: (a)variação do volume com o tempo; (b) variação do gradiente	;
hidráulico com o tempo; (c) variação da condutividade hidráulica com	0
tempo; (d) variação da temperatura com o tempo.	253
Figura 101 – Ensaio de permeabilidade com a amostra na temperatura	a de
77,5°C: (a)variação do volume com o tempo; (b) variação do gradiente	;
hidráulico com o tempo; (c) variação da condutividade hidráulica com	0
tempo; (d) variação da temperatura com o tempo.	254

Figura 102- Ensaio de calor específico para o solo do Campo	
Experimental, CP 1.	256
Figura 103- Ensaio de calor específico para o solo do Campo	
Experimental, CP 2.	256
Figura 104- Ensaio de calor específico para o solo do Campo	
Experimental, CP 3.	257
Figura 105- Ensaio de calor específico para o solo do Campo	
Experimental, CP 4.	257
Figura 106- Ensaio de calor específico para novas condições de	
compactação, e=1,324.	258
Figura 107- Ensaio de calor específico para novas condições de	

compactação, e=1,253.	258
Figura 108- Ensaio de calor específico para o solo da Cidade dos	
Meninos, CP 1.	259
Figura 109- Ensaio de calor específico para o solo da Cidade dos	
Meninos, CP 2.	259
Figura 110- Ensaio de calor específico para o solo da Cidade dos	
Meninos, CP 3.	260
Figura 111- Ensaio de calor específico para o solo da Cidade dos	
Meninos, CP 4.	260
Figura 112- Ensaio de calor específico para novas condições de	
compactação, e=0,75.	261
Figura 113- Ensaio de calor específico para novas condições de	
compactação, e=0,84.	261

Figura 114- Determinação do peso no tempo zero – CP1 (a)após o contato com o solo, (b) após secagem em estufa. Temperatura de 100°C. 265 Figura 115- Determinação do peso no tempo zero - CP2: (a) após o comtato com o solo, (b) após secagem em estufa. Temperatura de 100°C. 266 Figura 116- Determinação do peso no tempo zero – CP3: (a) após o comtato com o solo, (b) após secagem em estufa. Temperatura de 100°C. 267 Figura 117- Determinação do peso no tempo zero – CP4: (a) após o comtato com o solo, (b) após secagem em estufa. Temperatura de 100°C. 267 Figura 118- Determinação do peso no tempo zero - CP5: (a) após o comtato com o solo, (b) após secagem em estufa. Temperatura de 100°C. 267 Figura 119- Determinação do peso no tempo zero - CP6 (a) após o comtato com o solo, (b) após secagem em estufa. Temperatura de 100°C. 268 Figura 120- Determinação do peso no tempo zero - CP7: (a) após o comtato com o solo, (b) após secagem em estufa. Temperatura de 100°C. 268 Figura 121- Determinação do peso no tempo zero – CP8 (a) após o comtato com o solo, (b) após secagem em estufa. Temperatura de 100°C. 268 Figura 122- Determinação do peso no tempo zero - CP9 (a)após o comtato com o solo, (b) após secagem em estufa. Temperatura de 100°C. 269 Figura 123- Determinação do peso no tempo zero - CP10 (a)após o comtato com o solo, (b) após secagem em estufa. Temperatura de 100°C. 269 Figura 124- Determinação do peso no tempo zero – CP11: (a) após o com-tato com o solo, (b) após secagem em estufa. Temperatura de 100ºC. 269

Figura 125- Determinação do peso no tempo zero – CP12 (a) após o comtato com o solo, (b) após secagem em estufa. Temperatura de 100° C. 270 Figura 126- Determinação do peso no tempo zero – CP13 (a)após o comtato com o solo, (b) após secagem em estufa. Temperatura de 100° C. 270 Figura 127- Determinação do peso no tempo zero – CP14 (a)após o comtato com o solo, (b) após secagem em estufa. Temperatura de 100° C. 270 Figura 128- Determinação do peso no tempo zero – CP15: (a) após o com-tato com o solo, (b) após secagem em estufa. Temperatura de 100° C. 271

Figura 129- Determinação do peso no tempo zero – CP16 (a) após o comtato com o solo, (b) após secagem em estufa. Temperatura de 100°C. 271 Figura 130- Determinação do peso no tempo zero – CP17 (a)após o comtato com o solo, (b) após secagem em estufa. Temperatura de 100°C. 271 Figura 131- Determinação do peso no tempo zero – CP18 (a)após o comtato com o solo, (b) após secagem em estufa. Temperatura de 100°C. 272

Figura 132- Ensaio de variação de volume para o solo do Campo	
Experimental, estágio de 30ºC.	279
Figura 133- Ensaio de variação de volume para o solo do Campo	
Experimental, estágio de 40ºC.	280
Figura 134- Ensaio de variação de volume para o solo do Campo	
Experimental, estágio de 50ºC.	281
Figura 135- Ensaio de variação de volume para o solo do Campo	
Experimental, estágio de 60ºC.	282
Figura 136- Ensaio de variação de volume para o solo do Campo	
Experimental, estágio de 70ºC.	283
Figura 137- Ensaio de variação de volume para o solo do Campo	
Experimental, estágio de 80ºC.	284
Figura 138- Ensaio de variação de volume para o solo da Cidade dos	
Meninos, estágio de 30ºC.	285

Figura 139- Ensaio de variação de volume para o solo da Cidade dos	
Meninos, estágio de 40ºC.	286
Figura 140- Ensaio de variação de volume para o solo da Cidade dos	
Meninos, estágio de 50ºC.	287
Figura 141- Ensaio de variação de volume para o solo da Cidade dos	
Meninos, estágio de 60ºC.	288
Figura 142- Ensaio de variação de volume para o solo da Cidade dos	
Meninos, estágio de 70ºC.	289
Figura 143- Ensaio de variação de volume para o solo da Cidade dos	
Meninos, estágio de 80ºC.	290

Lista de tabelas

Tabela 1 – Técnicas para Controle e Remediação de Áreas	
Contaminadas(Evans, 1991).	39
Tabela 2- Custo para técnicas de remediações. (Wood, 1997).	41
Tabela 3 – Propriedades de alguns químicos orgânicos que tem sido	
encontrados em áreas contaminadas.	52
Tabela 4 – Analogias de Fluxo (Mitchell, 1993).	54
Tabela 5 – Propriedades Térmicas do Solo (modificado Mitchell, 1993)	56
Tabela 6 - Fenômenos de fluxo acoplado e fluxo direto (Mitchell, 1975).	64
Tabela 7 – Propriedades físicas da água em estado líquido	83
Tabela 8 - Caracterização geotécnica dos solos	89
Tabela 9-Índices físicos obtidos para a encosta do Campo Experimenta	190
Tabela 10– Índices Físicos obtidos para amostras da Cidade dos Menin	OS
	91
Tabela 11 – Cátions Trocáveis e Análise Química – Campo Experimenta	al
	94
Tabela 12- Cátions Trocáveis e Análise Química- Cidade dos Meninos	95
Tabela 13 – Variações de peso específico e umidade com a pressão de	
compactaçã	102
Tabela 14 – Parâmetros necessários nas análises	105
l abela 15 – Dados após compactação dos corpos de prova - Campo	
Experimental	136
Tabela 16 – Dados após compactação dos corpos de prova - Cidade de	SC
Meninos	136
Tabela 17 – Dados iniciais dos Corpos de Prova ensaiados – Campo	
Experimental	137

Tabela 18 – Dados iniciais de cada corpo de prova – Cidade dos Menin	los
	137
Tabela 19 – Dados Inicias dos Corpos de Prova	145
Tabela 20 – Dados dos corpos de prova e resultados de condutividade	
térmica - Campo Experimental	146
Tabela 21 – Dados dos corpos de prova e resultados de condutividade	
térmica – Cidade dos Meninos	146
Tabela 22 – Dados Inicias dos Corpos de Prova	156
Tabela 23 – Dados dos corpos de prova utilizados na determinação do	
calor específico	156
Tabela 24- Valores de calor específico com relação a umidade e	
temperatura para o solo do Campo Experimental.	158
Tabela 25- Valores de calor específico com relação a umidade e	
temperatura para o solo da Cidade dos Meninos.	159
Tabela 26- Parâmetros das curvas características para o solo do Campo	
Experimental	168
Tabela 27- Parâmetros das curvas características para o solo da Cidade	
dos Meninos	168
Tabela 28- Parâmetros das curvas características x umidade volumétri	са
para o solo do Campo Experimental.	172
Tabela 29- Parâmetros das curvas características x umidade volumétri	са
para o solo da Cidade dos Meninos.	172
Tabela 30- Parâmetros das curvas características seguindo-se a trajete	ória
de secagem para o solo do Campo Experimental.	174
Tabela 31- Parâmetros das equações de Van Genuchten.	176
Tabela 32 – Dados de cada corpo de prova ensaiados do solo do Cam	ро
Experimental	179
Tabela 33 – Dados de cada corpo de prova ensaiados do solo da Cida	de
dos Meninos.	179
Tabela 34 – Dados finais do ensaio do solo do Campo Experimental	187
Tabela 35 – Dados finais do ensaio do solo da Cidade dos Meninos	187
Tabela 36 – Comparação das condutividades hidráulicas obtidas	188
Tabela 37 – Dados dos corpos de prova ensaiados.	190

Tabela 38 – Resultados do ensaio de dissipação.	191
Tabela 39- Características dos elementos elétricos utilizados	218
Tabela 40– Dados iniciais dos corpos de prova do material natural sec	co ao
ar.	263
Tabela 41– Parâmetros do solo ensaiado do material natural seco ao	ar
	263
Tabela 42 – Dados iniciais dos corpos de prova do material natural	263
Tabela 43 – Parâmetros do solo ensaiado da curva característica do	
material natural	264
Tabela 44 – Dados Iniciais dos Corpos de prova do material natural	
saturado	264
Tabela 45 – Parâmetros do solo ensaiado da curva característica do	
material natural saturado	264
Tabela 46 – Dados Iniciais dos corpos de prova após compactação	265
Tabela 47 – Parâmetros do solo ensaiado do Material aquecido a 50oC.	
	265
Tabela 48 – Dados Iniciais dos corpos de prova após compactação.	266
Tabela 49 – Parâmetros do solo ensaiado do Material aquecido a 100	оС
	266
Tabela 50 – Dados iniciais dos corpos de prova do material após a	
compactação.	272
Tabela 51 – Parâmetros do solo ensaiado da curva característica do	
material submetido a 200oC.	272
Tabela 52 – Dados Iniciais dos Corpos de prova do material após a	
compactação.	273
Tabela 53 – Parâmetros do solo ensaiado da curva característica do	
material submetido a 300oC.	273
Tabela 54 – Dados Iniciais dos corpos de prova do material após a	
compactação.	273
Tabela 55 – Parâmetros do solo ensaiado da curva característica do	
material submetido a 100oC e depois saturado.	274

Tabela 56 – Dados Iniciais dos Corpos de prova do material após a	
compactação	274
Tabela 57 – Parâmetros do solo ensaiado da curva característica do	
material submetido a 300oC e posteriormente saturado.	274
Tabela 58 – Dados iniciais dos corpos de prova após a compactação.	275
Tabela 59 – Parâmetros do solo ensaiado da curva característica do	
material natural	275
Tabela 60 – Dados iniciais dos corpos de prova do material após a	
compactação.	275
Tabela 61 – Parâmetros do solo ensaiado da curva característica do	
material submetido a 100oC.	276
Tabela 62 – Dados Iniciais dos corpos de prova do material após a	
compactação.	276
Tabela 63 – Parâmetros do solo ensaiado da curva característica do	
material submetido a 200oC.	276
Tabela 64 – Dados Iniciais dos corpos de prova do material após a	
compactação.	277
Tabela 65 – Parâmetros do solo ensaiado da curva característica do	
material submetido a 300oC.	277
Tabela 66– Parâmetros iniciais do solo ensaiado	279
Tabela 67– Parâmetros iniciais do solo ensaiado Cidade dos Meninos	285

Lista de Símbolos

- a umidade volumétrica do ar
- Ativ. atividade
- α fator de tortuosidade para difusão de gases em solos
- α_{S} coeficiente térmico da expansão cúbica do mineral sólido.
- α_{ST} coeficiente físico-químico estrutural da variação de volume devido a
- temperatura
- $\alpha_{\rm w}$ coeficiente térmico de expansão da água do solo
- $\boldsymbol{\beta}$ fator de conversão de unidades
- C fator de forma
- c calor específico
- ca calor específico do ar
- cn calor específico do solo
- cs- calor especifico dos sólidos
- cw calor específico da água na fase líquida
- $C(\theta)$ capacidade de aquecimento volumétrica do meio poroso
- Ca- capacidade de aquecimento volumétrico do ar
- C_M capacidade de aquecimento volumétrico do meio seco
- Cs capacidade de aquecimento volumétrico dos sólidos
- C_w capacidade de aquecimento volumétrica da fase líquida
- d- diâmetro do cilindro
- D difusividade térmica
- D_0 difusividade molecular do vapor d'água no ar
- D_S diâmetro médio dos grãos
- D_T- difusividade térmica da água
- D_{Ta} coeficiente relacionando com o aquecimento da água adsorvida
- D_{TL} difusividade térmica do líquido
- D_{TV} difusividade térmica do vapor
- D₀- difusividade isotérmica da água
- D_{0L} difusividade isotérmica do líquido

- $D_{\theta V}$ difusividade isotérmica do vapor
- δ delta de Kronecker.
- ΔT variação de temperatura
- e índice de vazios
- e índice de vazios efetivos
- e_o água adsorvida no índice de vazios
- ε_{vT} deformação volumétrica devido a variação de temperatura
- g gravidade
- γ peso específico
- γ_d peso específico seco
- γw peso específico da água
- h umidade relativa do ar nos poros
- i vetor unitário na direção vertical
- ih gradiente hidráulico
- it gradiente térmico
- IP índice de plasticidade
- k condutividade hidráulica
- k_{θ} condutividade hidráulica não saturada
- L calor latente de vaporização da água
- L₀ calor latente de vaporização numa dada temperatura de referência T₀
- L_{ij} coeficiente acoplados
- LL limite de liquidez
- LP limite de plasticidade
- λ condutividade térmica
- λ_e condutividade térmica normalizada
- λ_{ij} condutividade térmica de um meio poroso úmido
- λ_q condutividade térmica do quartzo
- λ_s condutividade térmica do solo
- λ_{sat} condutividade térmica saturada
- λ_{seco} condutividade térmica seca
- λ_w condutividade térmica da água

- M coeficiente de variação de volume
- n porosidade
- μ viscosidade do permeante
- v viscosidade cinemática do fluído
- p pressão parcial do vapor de água nos vazios
- P pressão total de gás nos vazios
- q_h fluxo de água
- q_{liq} fluxo líquido
- q_m fluxo de umidade
- qt fluxo de calor
- q_{vap} fluxo de vapor
- θ teor de umidade volumétrica
- $\theta_i-\text{teor}$ de umidade volumétrica do ponto de inflexão
- $\theta_r-\text{teor}$ de umidade volumétrica residual
- θ_s teor de umidade volumétrica saturado
- r distância radial da fonte
- R constante universal dos gases
- ρ_0 densidade do vapor de água saturado
- ρ_d = massa específica seca do solo
- ρ_v $_{\scriptscriptstyle \rm L}$ densidade do vapor d'água
- ρ_{w} densidade da água
- S grau de saturação
- S_h teor térmico do meio poroso
- t tempo

 t_{50} – tempo no qual ocorre 50% da mudança de temperatura no centro da amostra

- T Temperatura
- T₅₀ fator tempo para 50% de variação da temperatura
- σ tensão superficial da água
- V volume de fluído
- V_m volume total a temperatura inicial.
- V_s volume dos Minerais Sólidos
- V_v volume total de vazios

- $\overline{V_{v}}$ volume efetivo de vazios
- Vvo volume de água adsorvida
- $V_{\rm w}-$ volume de água dos vazios
- υ fator fluxo massa
- υ energia térmica
- w umidade gravimétrica
- wnat umidade natural do solo
- W calor de molhamento diferencial
- X_j força governante
- Ψ carga total de sucção
- Ψ_i sucção correspondente à umidade volumétrica do ponto de inflexão($\theta_i)$
- Ψ_r sucção correspondente à umidade volumétrica residual($\theta_r)$
- ξ razão da variação do gradiente de temperatura nos poros completamente ocupados por ar em relação ao gradiente de temperatura total

"...Viver e não ter a vergonha de ser feliz E cantar, e cantar, e cantar, a beleza de ser um eterno APRENDIZ Ah meu Deus, eu sei que a vida poderia ser bem melhor e será Mais isso não impede que eu repita: é bonita, é bonita e é bonita..."